On Nonuniform Exponential Stability for Skew-evolution Semiflows on Banach Spaces

نویسنده

  • MIHAIL MEGAN
چکیده

The paper considers some concepts of nonuniform asymptotic stability for skew-evolution semiflows on Banach spaces. The obtained results clarify differences between the uniform and nonuniform cases. Some examples are included to illustrate the results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Exponential Stability for Skew-Evolution Semiflows on Banach Spaces

The paper emphasizes the property of stability for skew-evolution semiflows on Banach spaces, defined by means of evolution semiflows and evolution cocycles and which generalize the concept introduced by us in [10]. There are presented several general characterizations of this asymptotic property out of which can be deduced well known results of the stability theory. A unified treatment in the ...

متن کامل

Exponential Dichotomy and Trichotomy for Skew-Evolution Semiflows in Banach Spaces

The paper emphasizes the properties of exponential dichotomy and exponential trichotomy for skew-evolution semiflows in Banach spaces, by means of evolution semiflows and evolution cocycles. The approach is from uniform point of view. Some characterizations which generalize classic results are also provided. Mathematics Subject Classification: 34D09

متن کامل

Discrete Asymptotic Behaviors for Skew-Evolution Semiflows on Banach Spaces

The paper emphasizes asymptotic behaviors, as stability, instability, dichotomy and trichotomy for skew-evolution semiflows, defined by means of evolution semiflows and evolution cocycles and which can be considered generalizations for evolution operators and skew-product semiflows. The definition are given in continuous time, but the unified treatment for the characterization of the studied pr...

متن کامل

Perron Conditions and Uniform Exponential Stability of Linear Skew-product Semiflows on Locally Compact Spaces

The aim of this paper is to give necessary and sufficient conditions for uniform exponential stability of linear skew-product semiflows on locally compact metric spaces with Banach fibers. Thus, there are obtained generalizations of some theorems due to Datko, Neerven, Clark, Latushkin, Montgomery-Smith, Randolph, van Minh, Räbiger and Schnaubelt.

متن کامل

Lyapunov Operator Inequalities for Exponential Stability of Linear Skew-product Semiflows in Banach Spaces

In the present paper we prove a sufficient condition and a characterization for the stability of linear skew-product semiflows by using Lyapunov function in Banach spaces. These are generalizations of the results obtained in [1] and [12] for the case of C0-semigroups. Moreover, there are presented the discrete variants of the results mentioned above.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010